Journal of Global Biosciences

ISSN 2320-1355

Volume 8, Number 3, 2019, pp. 6021-6033

Website: www.mutagens.co.in

Research Paper

IN SILICO 16s rRNA PHYLOGENETIC ANALYSIS OF EXTREMELY TOLERANT AND RESISTANT PLANT GROWTH PROMOTING RHIZOBACTERIA

Bikram Paul¹, Sagarika Mohanta¹, Bibhas Deb^{1&2} and Manabesh Nath²

¹Department of Biotechnology, Gurucharan College, Silchar, Assam – 788004, ²Bioinformatics Centre, Gurucharan College, Silchar, Assam – 788004, India.

Abstract

Plant Growth Promoting Rhizobacteria (PGPR) are present in the rhizosphere which can enhance plant growth through a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, production of 1-Aminocyclopropane-1carboxylate deaminase (ACC), quorum sensing (QS) signal, interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The rhizospheric microorganisms have a major influence on plant and guard the health in an eco-friendly manner which helps in overcoming the extensive use of chemical fertilizer and thereby increases soil fertility which in turn helps in heavy tolerance. The study was done to understand the evolutionary relationships among thirty-eight different PGPR species on the basis of their 16s rRNA conserved sequences. Data was collected from NCBI Gen-Bank, multiple sequence alignment was done using ClustalX, nucleotide sequence and conserved sites were seen using BioEdit, and phylogenetic tree was constructed using MEGA 4. The phylogenetic tree revealed homology relations amongst the various PGPR which formed different clades on the basis of their similarity or dissimilarity with each other. Most the PGPR strains formed clades with their own genus. However, two PGPR species formed cluster with different genus of PGPR species rather than its own genus. Inference can be drawn from the phylogenetic characterisation of the various PGPR that a deeper understanding can be developed to figure out the mechanisms underlying the symbiotic association between different PGPR strains and varied plant species.

Key words: PGPR, Genbank Data collection, Phylogentic Analysis, Conserved Region, Nucleotide composition.

INTRODUCTION

Growth in plants is influenced by many biotic and abiotic factors. The thin layer of soil surrounding the plant roots is known as rhizosphere which is an active area of root activity and metabolism of plants. The term rhizosphere was first introduced by Hiltner to describe the narrow zone of soil surrounding the roots (Hiltner, 1904). A large number of microorganisms such as bacteria, fungi, protozoa and algae that colonize the rhizosphere can be classified according to their effects on plants and the way they interact with roots, some being pathogens whereas other trigger beneficial effects. Among them, bacteria are the most abundant. Certain specific bacteria are selected by the plants which contribute most to their fitness by releasing helpful organic compound through exudates (Lynch, 1990.). Rhizobacteria inhabit plant roots and exert a positive effect ranging from direct influence mechanisms to an indirect effect. So, the bacteria inhabiting the rhizosphere and beneficial to plants are known as PGPR (Kloepper & Leong, 1980). PGPR in the rhizosphere can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal, interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. (Bhattacharyya et al., 2012) .Chemical fertilizer, Heavy metal contamination and Soil salinity are one of the major world environment problems and has a negative impact on human health, agriculture decreases soil fertility and yield loss. To overcome their negative impact on environment as well as human health, PGPR the rhizospheric microorganisms around plant roots have a major influence on plant and guard the health in an eco-friendly manner. In recent years PGPR replaces agrochemical (fertilizer and pesticides) by a variety of mechanism. Certain metal resistance PGPR can seek metal mobility and availability to the plant through releasing chelating agent, acidification, phosphate solubilization and redox changes as well as . PGPR in saline conditions has been used to decrease the harmful effects of salt stress by reducing the ethylene production in the plant through ACC deaminase activities. It also increases plant growth and development

by producing various plant hormones (Sheng et al., 2008; Rajkumar, 2007, Nazima et al., PGPR belonging to genera Acinetobacter, Bacillus, Stenotrophomonas, 2014). Brevibacterium, Enterobacter, Pseudomonas, Burkholderia, Gulconacetobacter, Klebsiella of different strain has been known to show mechanisms like P.solubilization, Siderophore production, biological nitrogen fixation, 1-aminocyclopropane-1carboxylate deaminase(ACC), phytohormone IAA etc production, quorum sensing (QS) signal interference, anti-fungal activity. The experimental work on the basis of 16s rRna , The 16s rRNA sequence has hypervariable regions which signify that the sequence has diverged over years of evolution. This result in flanking of the conserved region and silencing the variations among them (Soumitesh et al., 2007). This attributes leads to an easy analysis, making it lot easier and cheaper to sequence and serves as a handy tool for evolutionary relatedness studies. 16s rRNA in phylogenetics proposed that rRNA is the most conserved sequence in the genome. Phylogenetics is the attempt to reconstruct the evolutionary relationships between species. Historically, this was done using quantitative morphological data, but modern methods rely more heavily on DNA sequence data. In the case of bacterial identification, 16s rRNA sequencing has emerged as the most convenient method which is a stepping stone for phylogenetics using Bioinformatics (Freckleton et al., 2002). In this study phylogenetic analysis was performed to understand the relationship among different species of PGPR which help in growth of plant across different environmental conditions such as agricultural fields, heavy metal contaminated soil and coastal area.

MATERIALS AND METHODS

Data Collection

29 nucleotide sequences of different 16s rRNA plant growth promoting rhizobacteria belonging to agricultural lands, coastal area and heavy metal contaminated soil plant were selected based on literature review. The sequences were downloaded from NCBI-GenBank in Fasta format (*.txt) along with their accession number and the scientific name of the bacteria and saved in notepad.

Tools Used

Nucleotide Sequence Analysis: The range of the length of the sequence downloaded from NCBI was kept between 1300 to 1600 bp. Nucleotide content (%GC and %AT) of all the sequences was found using BioEdit (version 7.0.9.0). BioEdit software was also used to find the different conserved region of multiple sequence alignment file obtains from.

Sequence Alignment

The Multiple Sequence Alignment was done using ClustalX version 2.0 which is standalone software.

Phylogenetic analysis:

The Phylogenetic tree was constructed using MEGA (version 6.1). Neighbour-Joining (NJ) method (Saitou and Nei 1987) was used for the construction of the tree from the aligned file provided by ClustalX (<file_name>.aln). Bootstrapping of the phylogenetics tree was done using Kimura2 model (Bootstrap value = 1000) (Kimura *et al.*, 1980).

RESULT AND DISCUSSION

All the sequences of PGPR that were downloaded from NCBI Genbank were analyzed using Bioedit software the complete nucleotide composition of all the bacteria along with their total length (A+T)% and (G+C)% content. The results are shown in table 1.

Table 1: Different bacteria along with their nucleotide composition, % GC, %AT and length

BACTERIA	PGP ACTIVITY	G.C %	A.T % content	Length	A	T	G	C
Pseudomonas stutzeri str	Nitrogen fixation suppressed	54.02	45.98	1392	355	285	437	315
PPB1	phytophthora crown rot							
	disease							
Brevibacterium epidermis str	PO ₄ solubilization, Zn	56.27	43.73	1372	320	280	453	319
RS15 (Siddikee <i>et al.</i> , 2010)	solubilization, Thiosulfate	56.15	43.85	1366	319	280	451	316
Brevibacterium Idonium str	(S ₂ O ₃), NH ₃ production, ACC	0 0.10		1000	017		.01	510
RS16 (Siddikee et al., 2010)	deaminase							
Bacilus Stratophericus str	PO ₄ solubilization, IAA	54.92	45.08	1393	348	280	434	331
RS340 (Siddikee et al., 2010)	Siderophore production	54.96	45.04	1412	350	286	439	337
Bacillus Subtilis str	Nitrogen fixation, ACC							
	-	55.02	44.98	1405	354	278	440	333

Journal of Global Biosciences ISSN 2320-1355

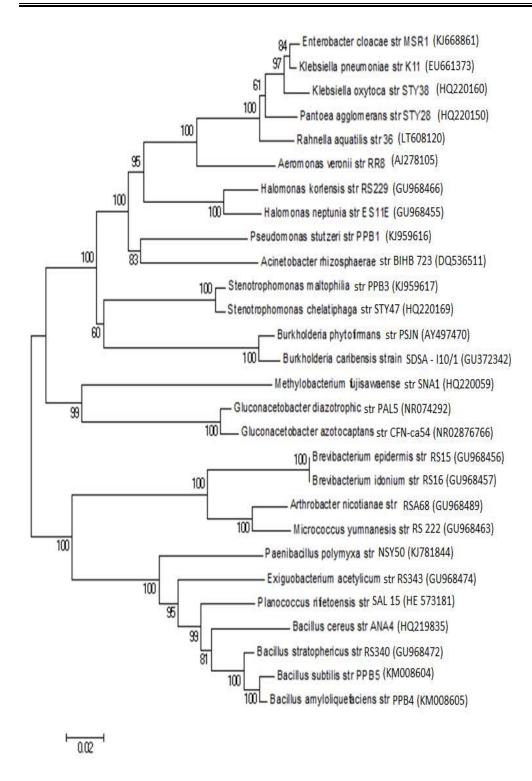
PPB5(Islam et al., 2016)	deminase activity.	53.62	46.38	1477	370	315	451	341
Bacillus amyloliquefaciens str	Nitrogen fixation suppressed							
PPB4 (Islam et al., 2016)	phytophthora crown rot							
Bacillus cereus str	disease.							
ANA4(Trivedi et al., 2010)	PO ₄ solubilization, Zn							
	solubilization, Thiosulfate							
	(S ₂ O ₃), NH ₃ production, ACC							
	deaminase.							
Burkholderia phytofirmans str	1-aminocyclopropane-1-	55.51	44.49	1488	375	287	480	346
PsJN (Sessitsch et al., 2005)	carboxylate deaminase	56.29	43.64	1391	344	263	450	333
Burkholderia carbensis str	activity, production of	30.29	43.04	1371	344	203	430	333
SDSA-I10/1(Roy et al., 2013)	Quorum-Sensing signal							
	compound, 3-hydroxyl –C8-							
	homoserine lactone.							
	Nitrogen fixation							
Stenotrophomonas maltophia	Nitrogen fixation, suppressed	55.3	44.7	1425	356	281	452	336
str PPB3(Islam et al., 2016)	phytophthora crown rot							
	disease							
Stenotrophomonas	P.solubilization, IAA	54.97	45.03	1450	360	293	458	339
chelatiphaga str	Siderophore production							
ATY55(Trivedi et al., 2010)	Nitrogen fixation, ACC							
	deminase activity							
Panibacillus polymyxa str	Antagonistic activity against	54.8	45.2	1416	361	279	443	333
NSY50 (Shi, Lu et al., 2017)	Fusarium oxysporum							
Arthobacter nicotianae str		57.04	42.96	1371	310	279	455	327
RSA68(Siddikee et al., 2010)								
Micrococcus yumnanesis str		56.92	43	1365	310	277	451	326
RS222(Siddikee et al., 2010)								
Exignobacterium acetylicum	DO solubilization 7n	55.5	44.5	1409	357	270	447	335
str Rs343(Siddikee et al.,	PO ₄ solubilization, Zn							
2010)	solubilization, Thiosulfate							
klebsiella oxytoca str	(S ₂ O ₃), NH ₃ production, ACC	54.5	45.5	1455	373	289	456	337
STY38(Siddikee et al., 2010)	deaminase							
Halomonas korlensis str		57.87	42.13	1372	332	246	452	342
RS229 (Siddikee et al., 2010)								
Halomonas neptunia str		55.43	44.43	1382	345	269	441	325
ES11E(Siddikee et al., 2010)								
Microbacterium arborescens	PO ₄ solubilization, IAA	56.59	43.41	1442	347	279	469	347
str ANA42(Trivedi et al.,	Siderophore production							
2010)	Nitrogen fixation, ACC							
	deminase activity							
Panteoa agglomerans str STY	PO ₄ Solubilization, nitrogen	55.69	44.31	1440	358	280	462	340
28	fixation							
Acinetobacter rhizosphaerae	PO ₄ solubilizing,	52.6	47.4	1500	387	324	461	328
str BHIB723 (Gulati et al.,	ACCdeaminase, Siderophore							
2008)	production							
Enterobacter cloacae str	PO ₄ solubilization,	55.15	44.85	1476	368	294	472	342
		<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	L

55.50

		sequer	sequences							
sequences		Content	_	,		Kan	(b.p.)			
% Average GC Content of	deminase activity of all % Average		<u> </u> ge АТ	Average Length of Range of the s		he sear	nences			
et al., 2010)	Nitrogen fixation, ACC									
fujisawaense str SNA1(Trivedi	Siderophore production									
Methylobacterium	PO ₄ solubilization, IAA		30.48	45.32	1443	340	202	409	340	
Aeromonas veronii str RR8	IAA production		55.37 56.48	44.63	1535 1443	378	307	497	353 346	
(Sachdev et al., 2009)					1.55.5					
klebsiella pneumoniae str K11	IAA production		54.72	45.0	1451	365	288	461	333	
2001)										
Ca54(Fuentes-Ramirez et al.,										
azotocaptans str CFN-										
Gluconacetobacter		56.6	43.4	1447	339	289	487	332		
diazotrophicus str PAL 15										
Gluconacetobacter	Nitrogen fixation		56.8	43.2	1486	346	296	498	346	
36(Palmieri, et al., 2016)	Fusariun									
Rahnella aquatilis str	Antagonistic ac	54.29	45.71	1341	341	272	424	341		
	deaminase	actvity								
SAL15(Rajput <i>et al.</i> , 2016)	solubilizati									
Planococcus rifietoensis str	IAA production, PO ₄		56.25	43.75	1513	371	291	483	368	
		• •								
,	antibacterial activity against									
MSR1(Khalifa et al., 2016)	phytohormone antibacterial act plant pat	tivity against								

Analysis of 16s rRNA sequences of different PGPR reveals that the sequences were within the range of 1341 – 1535 bp. The average GC% was around 55.50% and AT% was around 44.47%. The average length was around 1428 b.p (table 1). Multiple sequence alignment was done using ClustalX2. Different regions of conserved sequences of all the PGPR was found using Bioedit software. The results are shown in table 2.

44.47


1428

1341- 1535

Table 2: Conserved regions of the different PGPR species under observation

Conserved region	Position (b.p.)	Consensus	Segment Length
Region 1	343 to 363	343 ACTCCTACGGGAGGCAGCAGT 363	21
Region 2	520 to 543	520 CGTGCCAGCAGCCGCGGTAATACG 543	24
Region 3	788 to 814	788 AACAGGATTAGATACCCTGGTAGTCCA 814	27
Region 4	890 to 906	890 CCGCCTGGGGAGTACGG 906	17
Region 5	1073 to 1088	1073 TGTCGTCAGCTCGTGT 1088	16
Region 6	1095 to 1112	1095 ATGTTGGGTTAAGTCCCG 1112	18
Region 7	1385 to 1403	1385 CGGTGAATACGTTCCCGGG 1403	19

The Phylogenetic tree was constructed using MEGA 6.1 software to study the phylogenetic relationship among the Plant Growth Promoting Rhizobacteria that have been analyzed on basis of 16s rRNA sequence from all 29 species to access the degree and pattern of interspecific difference. The evolutionary history of PGPR was inferred using neighbor- joining method. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test was kept to 1000 replicates and are shown next to branches. The tree was drawn to scale, with branch length in the same units as those of evolutionary distance used to infer in the phylogenetic tree. The evolutionary distance was compute using the Kimura 2-parameter. condon position include were $1^{\rm st} + 2^{\rm nd} + 3^{\rm rd} + {\rm non-coding}$.

Figure 1: 16srRNA phylogenetic tree of plant growth promoting bacteria under study

Tree interpretation:

According to the 16s rRNA sequences based phylogenetics, it can be interpreted that the tree bifurcated into branches; again the two branches bifurcated into four branches i.e., *Klebsiella sp, Halomonas sp, Pseudomonas sp, Acinetobacter rhizosphearae, Enterobacter*

cloacae, Rahnella aquatilis, Pantoea agglomerans, Aeromonas veronii, Burkholdreia sp, Stenophomonas sp and Pseudomonas hibiscicola form first cluster. The second cluster was from among Methylobacterium fujisawaense and Gluconacetobacter sp. The third cluster was formed among Micrococcus yumnanesis, Arthrobacter nicotianae, Brevibacterium sp, and panibacillus polyxma, Brevibacillus brevis, Exiguobacterium accetylium, Plancoccus rifietoensis and Bacillus sp. from the fourth and final cluster.

Four species of *Bacillus* belong to a single clade with a minor bifurcation in the cluster due to minute difference in phylogenetic distance. In first cluster *Klebsiella sp* and *Enterobacter cloacae* feature in the same cluster. Rather, *Enterobacter cloacae* found to sharing high % of homology with *Klebsiella pneumonaie*. Another cluster was found of *Gluconacetobacter sp* having two species because of their high similar due to their same genus they were found the same genus. The same case was observed to belong to the same environment and similar activity and shows high % of homology which was evident from the NJ-tree.

Within the first cluster of the sub branch, it was observed *Enterobacter cloacae* bifurcated the clade of *Klebsiella* sp. (*K. pneumoniae*, *K. oxytoca*) and got paired with *K.pneumoniae*, Pattern and Ryu et al (2013) stated that indol- 3- pyruvate pathway which regulate the IAA production in plant utilizes indol-3-pyruvate decarboxylate which is encoded by ipdC gene in PGPR *Enterobacter cloacae* UW5. It was found that the sequence of TyrR which regulates the aromatic amino acid transport and metabolism production of tryptophan in *E. coli* was highly similar with promoter region sequence of ipdC in *Enterobacter cloacae* UW5 they also found about 78 % similarity of TyrR gene of *Enterobacter cloacae* with *Klebsiella pneumoniae*. So it can be inferred that TyrR gene is a regulatory protein which help in the production of IAA in plants with the help of PGPR strains such as *Enterobacter cloacae* and *Klebsiella pneumoniae*.

Another displacement was observed in which *Pseudomonas hibiscicola* got paired with *Stenotrophomonas maltophilia* rather than pairing with its own *Pseudomonas* clade and showed significant homology with each other. According to the study of Lisellot *et al.*, (2011) gyrB gene and 16s RNA gene of *Stenotrophomonas maltophilia* coincided at same positions which implies that gyrB gene is a functional part of the bacteria. Since, *Pseudomonas hibiscicola* strain shares high percentage of similiraity with

Stenotrophomonas maltophilia strain, it can be inferred that they both share the same properties of gyrB gene.

CONCLUSION

The current study was a minor effort towards understanding the impact of PGPR activity on plant growth with the help of different bacterial genus collected from diverse fields of agriculture, and diverse environmental sources. 38 nucleotide 16s rRNA partial sequences were studied on the basis of their varying plant growth properties such as phosphate solubilization, IAA Production; ACC deaminases which were some of the most common properties .A phylogentic tree was constructed among the 38 nucleotide sequences of PGPR to study the homologous relationship among them.

From the present study we can conclude that in all the discussed clades, the mismatch seen in every case was due to certain homology and similarity among them.

In *Bacillus* clade, homology is due to plant growth promoting characteristics in agriculture and heavy metal resistance in soil. In *Pseudomonas* clade, similarity is shown due to the fact that they present beneficial properties towards plant-growth. However, *P. hibiscicola* paired with *Stenotrophomonas maltophilia* because of higher homology between them their respective clade. In case of *Klebsiella sp. Enterobacter cloacae* bifurcated *K. pneumonia* and *K. oxytoca* and shows homology with *Kebsiella pneumonia*.

Inference can be drawn from the phylogenetic characterisation of the various PGPR that a deeper understanding can be developed to figure out the mechanisms underlying the symbiotic association and non symbiotic between different PGPR strains and varied plant species.

REFERENCES

- Babalola, O. O., Osir, E. O., Sanni, A. I., Odhiambo, G. D., & Bulimo, W. D. (2003).
 Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. *African Journal of Biotechnology*, 2(6), 157-160.
- Batool, N., Ilyas, N., & Shahzad, A. (2014). Role of plant growth promoting Rhizobacteria as Ameliorating agent in saline soil. *Pure and Applied Biology*, 3(4), 167.

- Beneduzi, A., Ambrosini, A., & Passaglia, L. M. (2012). Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. *Genetics and molecular biology*, 35(4), 1044-1051.
- Benson, D., Lipman, D. J., & Ostell, J. (1993). GenBank. Nucleic Acids Research, 21(13), 2963-2965.
- Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327-1350.
- Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. *Nucleic acids research*, 31(13), 3497-3500.
- Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. *The American Naturalist*, *160*(6), 712-726.
- Fuentes-Ramírez, L. E., Bustillos-Cristales, R., Tapia-Hernández, A., Jiménez-Salgado, T., Wang, E. T., Martínez-Romero, E., & Caballero-Mellado, J. (2001). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. *International Journal of Systematic and Evolutionary Microbiology*, 51(4), 1305-1314.
- Gulati, A., Vyas, P., Rahi, P., & Kasana, R. C. (2009). Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. *Current microbiology*, 58(4), 371-377.
- Hall, T. A. (1999, January). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In *Nucleic acids symposium series* (Vol. 41, No. 41, pp. 95-98). [London]: Information Retrieval Ltd., c1979-c2000.
- Hiltner, L. T. (1904). Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98, 59-78.
- Islam, S., Akanda, A. M., Prova, A., Islam, M. T., & Hossain, M. M. (2016). Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. *Frontiers in microbiology*, 6, 1360.

- Khalifa, A. Y., Alsyeeh, A. M., Almalki, M. A., & Saleh, F. A. (2016). Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. *Saudi journal of biological sciences*, 23(1), 79-86.
- Kloepper, J. W., Leong, J., Teintze, M., & Schroth, M. N. (1980). Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. *Nature*, *286*(5776), 885-886.
- Lynch JM, 1990. The Rhizosphere. John Wiley & Sons Ltd, Chichester, Edited by Lynch JM, 458.
- Mehnaz, S., Mirza, M. S., Haurat, J., Bally, R., Normand, P., Bano, A., & Malik, K. A. (2001). Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. *Canadian journal of microbiology*, 47(2), 110-117.
- Paul, D., & Nair, S. (2008). Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. *Journal of basic microbiology*, 48(5), 378-384.
- Rajkumar, M., & Freitas, H. (2008). Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals. *Chemosphere*, 71(5), 834-842.
- Ramadoss, D., Lakkineni, V. K., Bose, P., Ali, S., & Annapurna, K. (2013). Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. *SpringerPlus*, *2*(1), 6.
- Roy, B. D., Deb, B., & Sharma, G. D. (2013). Isolation, characterization and screening
 of Burkholderia caribensis of rice agro-ecosystems of South Assam, India. *African Journal of Agricultural Research*, 8(4), 349-357.
- Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. *Life Sci Med Res*, *21*(1), 30.
- Sessitsch, A., Coenye, T., Sturz, A. V., Vandamme, P., Barka, E. A., Salles, J. F., & Wang-Pruski, G. (2005). Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties. *International Journal of Systematic and Evolutionary Microbiology*, 55(3), 1187-1192.
- Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their

- potential in promoting the growth and lead accumulation of rape. *Environmental Pollution*, 156(3), 1164-1170.
- Shi, L., Du, N., Shu, S., Sun, J., Li, S., & Guo, S. (2017). Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. *Scientific Reports*, 7.
- Siddikee, M. A., Chauhan, P. S., Anandham, R., Han, G. H., & Sa, T. (2010). Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. *J Microbiol Biotechnol*, 20(11), 1577-1584.
- Svensson-Stadler, L. A., Mihaylova, S. A., & Moore, E. R. (2012). Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS microbiology letters, 327(1), 15-24.
- Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. *Molecular biology and evolution*, 24(8), 1596-1599.
- Thompson, Julie D., et al. "The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools." Nucleic acids research 25.24 (1997): 4876-4882.
- Trivedi, P., Spann, T., & Wang, N. (2011). Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. *Microbial ecology*, *62*(2), 324-336.
- Woese, Carl R., Otto Kandler, and Mark L. Wheelis. "Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya." Proceedings of the National Academy of Sciences 87.12 (1990): 4576-4579.
- Yarzábal, L. A. (2014). Cold-Tolerant phosphate-solubilizing microorganisms and agriculture development in mountainous regions of the World. In *Phosphate solubilizing microorganisms* (pp. 113-135). Springer International Publishing.